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Abstract—Simultaneous localization and map-building (SLAM) continues to draw considerable
attention in the robotics community due to the advantages it can offer in building autonomous robots.
It examines the ability of an autonomous robot starting in an unknown environment to incrementally
build an environment map and simultaneously localize itself within this map. Recent advances in
computer vision have contributed a whole class of solutions for the challenge of SLAM. This paper
surveys contemporary progress in SLAM algorithms, especially those using computer vision as main
sensing means, i.e., visual SLAM. We categorize and introduce these visual SLAM techniques with
four main frameworks: Kalman filter (KF)-based, particle filter (PF)-based, expectation-maximization
(EM)-based and set membership-based schemes. Important topics of SLAM involving different
frameworks are also presented. This article complements other surveys in this field by being current
as well as reviewing a large body of research in the area of vision-based SLAM, which has not been
covered. It clearly identifies the inherent relationship between the state estimation via the KF versus
PF and EM techniques, all of which are derivations of Bayes rule. In addition to the probabilistic
methods in other surveys, non-probabilistic approaches are also covered.

Keywords: Robot localization; map-building; computer vision; probabilistic frameworks; set
membership.

1. INTRODUCTION

An autonomous mobile robot is an intelligent agent which explores an unknown
environment with minimal human intervention. Building a relative map which
describes the spatial model of the environment is essential for exploration by such
a robot. Possessing a map with sufficient location information of landmarks and
obstacles can make it possible for the robot to estimate its pose, to plan its path and
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Figure 1. A depiction of feature-based SLAM.

to avoid collisions. Conversely, if pose of the robot is given all along its trajectory,
the map can be easily acquired through its perception of the outside world.

The procedure of simultaneous localization and map-building (SLAM) can be
described as follows (Fig. 1). A robot starts its navigation in an unknown
environment from an unknown location. The robot navigates using its dead-
reckoning sensor (e.g., odometer). As other onboard sensors perceive features
(landmarks) from the environment, the SLAM estimator performs a series of
processing: recognize the feature, determine whether it is a new one, calculate
its spatial position and add it to current feature map. Concurrently, the estimator
localizes the robot according to identified and known features. In this way, the
robot can incrementally build the environment feature map and localize itself.

The ability to estimate both the map and the robot location is usually due to for-
mulating the statistical correlations that exist between the estimates of the position
of the robot and landmarks, and between those of the landmarks themselves. Gen-
erally in SLAM, the robot is subject to errors in measurement and motion control.
A strategy for increasing map-building accuracy is to re-observe identified or ‘old’
landmarks. Meanwhile, the robot pose uncertainty is also constrained by this re-
observation.

Robotic map-building can be traced back to 25 years ago. At the beginning, they
were generally grouped into metric [1] and topological approaches [2, 3]. Since
the 1990s, probabilistic approaches have become dominant in map-building. An
important milestone of map-building is a series of papers presented by Smith et al.
[4, 5]. They presented a powerful probabilistic framework for SLAM. Encouraged
by their success, a large number of probability-based solutions to SLAM were
published [6–20]. Most of them used probabilistic frameworks to process the
measurement noise (sensing errors) and turn the measurements into a map. Only
a few used non-probabilistic techniques [21, 22].

The physical environments explored in these recent studies are very diverse.
For example, Kim et al. [7, 12] studied airborne SLAM in unknown terrain.
Newman [23] explored the sub-sea domain. Sujan et al. [15, 16] investigated
planetary environments, such as cliffs and Martian terrain. However, most of the
algorithms and applications were for navigation in structured indoor environments
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[9, 10, 17, 19, 21, 22, 24]. While many of these algorithms were used on a single
robotic platform, some of them employed groups of robots to corporate during the
navigation procedure [11, 14, 21, 22, 25].

As indicated above, sensors are the main avenue for robots to perceive their
environment. Commonly used sensors can be categorized into laser-based, sonar-
based, inertial-based and vision-based systems. Laser ranging systems are active
sensors that are accurate, but their point-to-point measurement characteristic limits
the development in semantic object recognition and tracking. Sonar-based systems
are fast and cheap, but usually are not very accurate. Some early and successful
applications of using sonar for SLAM have been reported in Refs [26, 27]. Sonar
provides measurements and recognition capacities similar to vision. However,
compared to a large volumes of vision research in SLAM, the use of sonar is
limited. In the case of sole dependence on an inertial sensor, such as an odometer,
a small error can have large effects on later position estimates [28]. Other short-
range sensors, such as infrared and tactile sensors, are not suitable for global
measurements, where relatively long-range sensors are required.

One of the mainstream perception techniques is the use of a vision-based sensor.
It is desirable for its long range, high resolution and its passive property (i.e., it
does not emit energy, which makes it possible to incorporate other heat-sensitive
sensors, such as infrared). State-of-the-art research in computer vision has produced
several advances that can be exploited in SLAM. Examples include environment
map-building in scene modeling, as well as camera motion analysis and description
in computer vision. During the last decade, vision-based SLAM solutions have been
able to achieve robust solutions mainly due to advances in hardware, mathematics
of computer vision and feature abstraction techniques. On the hardware side,
both the camera and computer industries have made significant progress so that
full-resolution images can be processed at real-time frame rates. In mathematics,
the geometry of computer vision has been understood thoroughly and explained
systematically only during the past decade [29]. Finally, recent advances in feature
extraction enable the usage of high-level vision-based landmarks (complex and
natural structures such as doors and road signs) in contrast to early attempts using
low-level features (e.g., vertical edges, line segments, etc.) and artificial beacons.
As stated by Thrun, SLAM approaches are using greedy algorithms that attempt
maximal information gain [28]. Some recently published algorithms can show this
type of tendency [7, 8, 10–14, 17, 19, 30, 31]. More literature of computer vision
relating to SLAM will be presented in Section 3.

Wolter et al. emphasized two important points for SLAM, “any approach to
master the SLAM problem can be decomposed into two aspects: handling of
map features (extraction from sensor data and matching against the (partially)
existing map) and handling of uncertainty” [32]. Accordingly, computer vision
techniques can handle feature tracking and recognition well, and they provide
robust three-dimensional (3-D) reconstruction which is essential for constructing
a feature map. Meanwhile, probabilistic estimation theories offer many paradigms
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to optimize uncertainty and error. Therefore, the recent trend of state-of-the-art
SLAM algorithms is to use computer vision as a perception mechanism within a
probabilistic framework.

We would like to add this survey to two additionally related surveys. The first, by
De Souza et al., focused mainly on map-based localization with a limited coverage
of map-building pertaining to publications up to late 1990s [33]. The second, by
Thrun, provided a comprehensive review of robotic map-building with a focus on
probabilistic map-building algorithms without specifying any type of sensors [28].
It also included an adequate review of 53 map-building applications. With these
two surveys as the backdrop, we would like to focus on recent research activity
in SLAM using computer vision and refer to additional 49 applications and 28
computer vision algorithms not included in previous surveys. Our survey clearly
identifies the inherent relationship between the state estimation via Kalman filtering
(KF) versus particle filtering (PF) and expectation maximization (EM) technique,
all of which are derivations of Bayes rule. In addition, three probabilistic methods
(i.e., KF based, PF based and EM based) and non-probabilistic approaches (i.e., set
membership (SM) based) are covered in our survey.

As a complete literature review in the field of visual SLAM, some key topics
that involve different frameworks will also be introduced in this survey. The first
and most fundamental one to all SLAM solutions is the data association problem,
which arises when landmarks cannot be uniquely identified, and due to this the
number of possible hypotheses may grow exponentially [28, 34]. Second, the
loop-closing problem requires successful identification of revisited landmarks to
build a consistent map, which is a direct application of data association [35].
The third is the bearing-only SLAM. It arises from the limitations of using
computer vision in SLAM where it is not possible to calculate a meaningful
range from a single measurement. In contrast, cameras can calculate the angle
to landmark sightings and apply triangulation to determine an appropriate initial
location estimate [30, 36, 37]. The last one is the kidnapped robot problem, which
requests a robot to recover from its localization failure [38].

We begin with basic concepts of estimation theory and computer vision. The main
frameworks are reviewed in Section 4. We then discuss recent computer vision-
based algorithms within the context of these frameworks. Additionally, we analyze
their strengths and limitations. Four important topics in SLAM will be discussed
after the frameworks. Finally, comparisons of the four classes of solutions are
presented.

2. BASIC CONCEPTS IN ESTIMATION THEORIES

2.1. Bayesian recursive estimation

All probabilistic SLAM algorithms are derived from the recursive Bayes rule [39]:

p(xk|zk)p(zk) = p(zk|xk)p(xk), (1)
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where xk is the state consisting of the robot pose and of environment features at
time k. In visual SLAM, measurements (e.g., snapshot images) of data are obtained
over time, zk = {zi , i = 1, . . . , k} is a set of measurements from time 1 to k,
where zk is a measurement by robot sensor at time k, which is used to estimate the
inaccessible state xk:

zk = hk(xk, nk), (2)

where hk is a possibly nonlinear function and nk is an independent and identical
distributed (i.i.d.) measurement noise sequence.

The process evolution of the state between time k − 1 and k can be defined by a
possibly nonlinear function fk, such that:

xk = fk(xk−1, wk−1), (3)

where process noise wk−1 is also i.i.d.
Now let us define the SLAM problem from a Bayesian perspective: it is to

recursively calculate some degree of belief in the inaccessible state xk given the
measurements zk. Thus, constructing a probability function (PDF) p(xk|zk), also
called a posterior, is necessary. Generally, the PDF can be obtained in a prediction–
update recursion.

Consider that a posterior PDF p(xk−1|zk−1) is given, then the prior of the state at
time k can be computed via the Chapman–Kolmogorov equation:

p(xk|zk−1) =
∫

p(xk|xk−1)p(xk−1|zk−1) dxk−1, (4)

where the PDF p(xk|xk−1) is defined by (3). This procedure is the called prediction
stage.

In the update stage, a new measurement zk is employed to update the prior
p(xk|zk−1) to determine the posterior p(xk|zk) via the conditional Bayes rule by
rewriting (1):

p(xk|zk) = p(xk|zk, zk−1) =
p(zk|xk, zk−1)p(xk|zk−1)

p(zk|zk−1)
, (5)

where there are three points needed to be further clarified regarding to (5):

• The PDF p(xk|zk, zk−1) = p(xk|zk) is obtained by the fact of a Markov process
of order 1.

• A mild assumption is proposed when we were interested in predicting the mea-
surement zk given by a known state xk and no past measurement provided addi-
tional information, a conditional independence could be expressed as follows:

p(zk|xk, zk−1) = p(zk|xk).

• The factor p(zk|zk−1) in the denominator is the same for any value xk in the
posterior p(xk|zk). Thus, it is often written as a positive normalizer in Bayes rule
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and denoted η, such that:

η = p(zk|zk−1) =
∫

p(zk|xk)p(xk|zk−1) dxk, (6)

where the likelihood function p(zk|xk) is defined by the measurement model
in (2) with given statistics of nk and prediction p(xk|zk−1) is determined in (4).

Therefore, (5) is re-formulated as follows:

p(xk|zk) = ηp(zk|xk)p(xk|zk−1). (7)

The objective posterior p(xk|zk) can be solved by multiplying the probability of the
measurement zk based on the hypothesis of state xk and the prior p(xk|zk−1). In
other words, the recursive Bayesian estimator allows new information to be added
simply by multiplying a prior by a current (k-th) likelihood.

Thus, (4) and (7) establish the basis for the optimal Bayesian solution for
SLAM. However, such a solution is a conceptual idea that cannot be practically
implemented in the real-world. Optimal solutions, such as KF and PF, employing
the PDFs in two stages, will be introduced in Section 4.

2.2. Minimum mean-squared error (MMSE) estimation and the posterior PDF

Before moving to the next section, a MMSE approach to determine the state xk is
shown, which will be used to deduce the relationship between the PDF p(xk|zk) and
optimal filters. First, a cost function for determining an estimate of the state x̂k is
set as:

x̂MMSE
k = arg min

x̂k

E{(x̂k − xk)
T(x̂k − xk)|zk},

where E{·} is an expectation operator and T indicates a transpose of a matrix or
vector. The motivation for this operation is to find an estimate of the state x̂k that
minimizes the expected value of the sum of the squared errors between the true xk

and estimate x̂k, given all the measurements. It is a classic criterion for optimal
estimation in adaptive signal processing [40]. Now, the cost function is specified as
follows:

J (x̂k, xk) =
∫ ∞

−∞
(x̂k − xk)

T(x̂k − xk)p(xk|zk) dxk.

Differentiating this cost function, setting to zero and grouping terms, we have:

x̂k =
∫ ∞

−∞
xkp(xk|zk) dxk,

(8)
x̂MMSE

k = E{xk|zk}.

This result tells us that the MMSE estimate of a random variable given a whole set
of measurements is the mean of that variable conditioned on the measurements. In
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the following sections, these concepts and terms will be employed to specify robotic
SLAM algorithms.

3. COMPUTER VISION LITERATURE RELATING TO SLAM

In this section we provide details on how vision is used for robot navigation. First,
we distinguish between explicit and implicit use of vision for navigation. Then,
we discuss how successful navigation systems tend to use vision in combination
with other sensors. Also, we address the problems of feature tracking and 3-D
reconstruction, and give important references. Feature tracking and reconstruction
are the two important steps that feed the measurements to the SLAM framework.

Vision as a sensor is prominent due it being the ‘richest’ sense of humans. The
ultimate goal is to make the machine see as humans do. There are two major classes
of methods that use vision for navigation. The first class uses vision to estimate
the 3-D structure (feature locations) and the pose of the robot. Since these methods
explicitly calculate the above parameters based on the image information, they are
explicit vision methods. The second class uses vision in a rather implicit manner.
They do not require an intermediate 3-D reconstruction of the world and/or robot
pose estimation to navigate. Instead, changes observed in consecutive images are
used in a feedback mechanism to drive the robot. Therefore, these methods are
inherently simple, although they may not have the accuracy of the first class of
methods.

Systems which use stereo camera pairs and monocular cameras with structure
from motion recovery fall into the first category. The main division within this
category is due to whether the cameras are calibrated or uncalibrated. Beardsley
et al. [41] used controlled rotations of an unclaibrated stereo rig to recover the
3-D structure up to an affine transform. They used corner-matching techniques
for feature correspondence. Davison’s work presented in his thesis [42] dealt with
SLAM for a robot with a stereo active head, operating in an unknown environment
and using point features in the world as visual landmarks. More SLAM-related
details on these are given in Section 4.

Some of the methods falling into the second class of methods are biologically
inspired [43]. One common example is ‘bee navigation’-type methods based on
optical flow. Santos-Victor et al. [44] used a two-camera system with opposite
optical axes which mimics the centering reflex of a bee. If the camera orientation is
tilted toward the robot heading direction, instead of fixing the cameras with opposite
optical axes, the motion parameters can give additional structure cues. Giachetti et
al. [45] described a procedure for obtaining reliable and dense optical flow from
image sequences taken by a camera mounted on a car moving in usual outdoor
scenarios. They performed dense optical flow estimates using correlation techniques
and then estimated the ego-motion. Lerner et al. [46] used the optical flow derived
from two consecutive camera frames in combination with a digital terrain map to
estimate the position, orientation and ego-motion parameters.
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3.1. Vision with other sensors

Vehicular intelligent transportation systems (autonomous road navigation systems)
tend to use a combination of global positioning systems (GPS) and vision as primary
sensors, in addition to many other onboard sensors such as LADARs and inertial
sensors. The main use of vision in these systems is not for core navigation.
However, they extensively use vision for various purposes worth mentioning in
this survey. One of the early examples is the ‘NAVLAB’ [47] vision system from
Carnegie Mellon University. In their system, vision was used for two purposes—
road following based on color information and obstacle avoidance in combination
with the information from a laser range finder. The main purpose of using vision
in ‘VIRTUOUS’ of Sotelo et al. [48] was to to correctly track the lane of any kind
of unstructured road (roads without lane markers painted on them), while correctly
detecting other vehicles. Successful systems use inertial sensors in combination
with the vision. For example ‘Stanley’ from the Stanford AI group, which won
the DARPA challenge in 2005, incorporates GPS measurements, a 6-d.o.f. inertial
measurement unit and the wheel speed for pose estimation. While this vehicle is
in motion, the environment is perceived through four laser range finders, a radar
system, a stereo camera pair and a monocular vision system. Lobo and Dias [49]
used the vertical reference provided by an inertial sensor to estimate the pose of the
stereo rig, which makes the reconstruction problem simple. They also describe in
detail the methods of using inertial sensor data in a vision system.

3.2. Feature tracking and 3-D reconstruction

There are two major problems to be solved in order to exploit the richness of
vision for robot localization and map-building: the feature recognition and tracking
problem, and the 3-D reconstruction problem. Feature tracking is the problem
of estimating the locations of features in an image sequence. Although there is
a mature body of literature addressing feature recognition [50–53] and tracking
[54–56], the problem itself is still considered unsolved. For example, a combination
of Harris corner detector and RANSAC is a reasonably good tracker. For a recent
comparison of corner detectors please refer to Kenney et al. [57]. Scale-invariant
feature transforms (SIFT) proposed by Lowe [58] are a highly discriminative class
of features. They facilitate matching across image pairs with strong affine warps
and wide baseline matching. Once the features are tracked, 3-D reconstruction
can be performed. The 3-D reconstruction is the problem of obtaining the 3-D
coordinates and the camera (robot) pose using two or more (2-D) images by using
the understanding of the geometry of multiple image formation. The typical
scenario consists of a camera mounted on a robot platform, making images,
obtaining the 3-D reconstruction using these images and guiding the robot.

The 3-D reconstruction problem is solved based on the understanding on multiple
view geometry and this subject has been comprehensively addressed in classic
books by Ma et al. [29], Hartley and Zizerman [59] and Faugeras et al. [60]. The
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3-D reconstruction can be categorized into two, i.e., calibrated and uncalibrated
reconstruction, and reviews can be found in Lu et al. [61] and Fusiello [62].
Two views are related by the epipolar geometry and a special matrix called the
fundamental matrix (essential matrix when the cameras are calibrated). In addition
to the references given above on multiple-view geometry, a comprehensive review
on the estimation of epipolar geometry is found in Zhang [63]. One method
of obtaining the 3-D structure using multiple views is the factorization method
introduced by Tomasi and Kanade [64–67]. The scene structure obtained using
the multiple-view geometry techniques relates to the true structure only up to
a transform (affine or projective [59]). Upgrading this structure to a similarity
transform is called metric reconstruction, Euclidean reconstruction, stratification
or normalization [68]. However additional constraints such as landmarks are
required to upgrade the structure to the true coordinates. If the sequence of (i)
feature tracking, (ii) 3-D reconstruction and (iii) normalization and upgrading to
true structure is followed, the robot location and the scene structure is available for
navigation, with the only uncertainty due to inherent noise contamination.

3.3. Limitations of using vision

There are many drawbacks in using vision and realizing the naive perception
(making the computer see as the humans do) is a daunting task. What this implies is
that there are many practical difficulties in adopting vision for navigation. Humans
seem to rely on a vast amount of prior experience in making decisions based on what
their eyes see. Pattern recognition and machine learning for vision are important in
this context. In any case, we make a lot of assumptions about the environment or the
vision system itself in using vision for navigation. For example, we may assume that
the robot is placed in the indoor environment, and that there are a lot of geometrical
structures present and detectors such as the Harris corner detector that are able to
find trackable features. Feature detection and tracking themselves are intimidating.
When there is a region of no-texture, e.g., white wall or a grassy land seen from afar,
trackers simply fail. On the other hand, when there is repeating structure, e.g., bricks
on a brick wall, and when no global context is used in tracking, there is no method
of finding true matches. Therefore, the requirements of the problem are 2-fold:
there should be features and they should be distinct. Even if the tracking problems
are solved, there are complications in assimilating structure and pose from these
measurements. Tracked features may form degenerative configurations, although
rare in practice, so that no true structure recovery is possible. Moreover, although
well understood, reconstruction from motion parallax is a mathematically complex
and numerically sensitive problem. On top of all these, measurements done via
images are inherently noisy. In summary, vision is a difficult problem with many
drawbacks. This does not mean that it is not useable for navigation. If used with
care, vision can produce amazing results, and readers are strongly encouraged to
read Hartley and Zisserman [59] and Ma et al. [29].
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4. APPROACHES WITHIN SLAM FRAMEWORKS

The recent advances in SLAM by computer vision are implemented within estima-
tion frameworks, most of which are probabilistic. These frameworks can be catego-
rized into four groups: KF, PF, and EM in the probabilistic category and SM in the
non-probabilistic category.

4.1. KF-based algorithms

KF has a 40-year history for estimating the state of a linear dynamic system
perturbed by Gaussian white noise using measurements that are linear functions
of the system state, but corrupted by additive Gaussian white noise [69]. From the
mid-1980s, Smith et al. introduced KF to the field of robotic map-building [4, 5].
So far, an overwhelming number of solutions to the SLAM problem have been
implemented within the framework of KF or one of its variants.

Being well known as a good study paradigm for Bayesian prediction–update
recurrence, KF requires three assumptions:

• Equation (3) must be a known linear state transition function Fk in its arguments
with added process Gaussian noise wk−1, such that:

xk = Fkxk−1 + wk−1.

• Similarly, (2) must be a known linear measurement function Hk in its arguments
with added measurement Gaussian noise nk:

zk = Hkxk + nk.

• The initial posterior p(x0|z0) = p(x0) must be Gaussian.

These three assumptions can guarantee the posterior p(xk|zk) is always a Gaussian
[70].

The reason for Gaussianity is due to the fact that the KF algorithm can be viewed
as the following relationship:

p(xk−1|zk−1) = N (xk−1;µk−1|k−1, Σk−1|k−1)

p(xk|zk−1) = N (xk;µk|k−1, Σk|k−1)

p(xk|zk) = N (xk;µk|k, Σk|k),

where N (x;µ, Σ) is a Gaussian PDF with argument (the state) x, mean µ and
covariance Σ. The subscripts k−1|k−1, k|k−1 and k|k represent last time step a
posteriori, current a priori and current a posteriori, respectively [40]. Thus, µ
and Σ are predicted and updated in two stages:

• Prediction:

µk|k−1 = Fkµk−1|k−1 (9)

Σk|k−1 = FkΣk−1|k−1FT
k + Qk−1, (10)
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where Qk−1 is the covariance of wk−1 that is assumed to be zero mean and
independent to nk.

• Update:

µk|k = µk|k−1 + Kk(zk − Hkµk|k−1) (11)

Σk|k = Σk|k−1 − KkHkΣk|k−1, (12)

where

Sk = HkΣk|k−1HT
k + Rk (13)

Kk = Σk|k−1HT
k S−1

k , (14)

are the covariances of the innovation term νk = zk − Hkµk|k−1 and Kalman gain,
respectively. Rk is the covariance of nk with zero mean.

However, there are two important clarifications for the above formulation:

• The reasons for using the mean µk of state xk as the substitute of the estimate
state x̂k can be found in (8).

• Some applications denote the process of determining νk as the ‘observation’
stage.

A complete mathematical derivation of KF can be found in Ref. [40]. Interested
researchers are referred for further details.

4.1.1. Variants of KF in SLAM. There are two main variants of KF in state-of-
the-art SLAM research, i.e., the extended Kalman filtering (EKF) and the sparse
extended information filtering (SEIF), which will be introduced in the following
two separate subsections.

4.1.2. EKF. Commonly, non-linearities exist in the SLAM problem. For
example, the control command in SLAM usually contains trigonometric functions.
Then the robot pose does not depend linearly on the previous pose. To accommodate
this, the process model in KF has to be modified as follows:

µk|k−1 = fk(µk−1|k−1),

where fk(·) is a non-linear state transition function of the previous state µk−1|k−1.
Another non-linearity lies in sensor measurement in SLAM, i.e., the measurement
model is rewritten as follows:

zk|k−1 = hk(µk|k−1),

where hk(·) is a non-linear measurement function of the state prediction and relies
on the sensor properties. To meet the assumptions of KF, fk(·) and hk(·) are
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Figure 2. Flow chart of KF-based SLAM.

linearized by first-order Taylor series expansions [71] as follows:

F̂k =
dfk(x)

dx

∣∣∣∣
x=µk−1|k−1

(15)

Ĥk =
dhk(x)

dx

∣∣∣∣
x=µk|k−1

,

where the local F̂k and Ĥk are to replace their counterparts in (9)–(14). The
generalizing filter is known as an EKF. An illustration of an EKF-based SLAM
framework is shown in Fig. 2.

In the field of SLAM, researchers recently employed EKF combining novel
models of computer vision and environments. For example, Davison et al. presented
a SLAM approach using active vision [8, 72]. They mounted only one active stereo
camera to solve the SLAM problem in structured indoor environments. Like most
of the SLAM algorithms, inputs were from an odometer and feature point depth
from computer vision. Typically, the outputs were robot pose and a 3-D feature
map. We will skip such descriptions in the remaining part of this paper unless they
are different. The strengths of this algorithm lie in its active vision sensors, i.e.,
active vision can act and interact with the environments [73]. In other words, the
cameras can observe the feature points from many directions so that the vehicle
does not need to adjust its pose much when observing feature points. In this
algorithm, feature-tracking and matching approaches can handle ‘natural’ features
(e.g., physical objects) in a lab environment. The limitations include the inability to
work well in a large open space, since it is only suitable for topological feature-rich
information environments. Real experiments were reported [8, 72] where a robot
transverses a go–return trip with a 24 m trajectory. The localization estimate can be
accurate up to the centimeter level.

Castellanos et al. used the symmetries and perturbations model (SPmodel) to
represent the environments. They fused a 2-D laser rangefinder and a charge
coupled device (CCD) trinocular stereo system that gained redundancy to achieve
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sensing reliability [9, 74]. Self-calibrations of the laser and stereo camera were
given, and their mutual calibration was also provided. The laser data readings were
segmented to supporting lines and their length estimated (counted from endpoints);
these readings were upgraded to high-level features (corners and semi-planes) by
fusing laser rangefinder with vision data. Vision detected the edges. Processed
sensor results were fused utilizing multi-sensory calibration and the SPmodel, and
then corresponding features were paired. The benefits of this fusion are to maximize
both sensors advantages, e.g., the laser does well on range measurement and vision
detects accurate edges. Of course, the weakness of computational complexity comes
from combining uncertainties in the measurement of two types of sensors and
from redundancy removal. Experimental results show that this multisensor-based
approach was 96.2% compatible to ground truth.

Tomatis et al. used a similar sensing system, laser scanner and CCD camera for
their global topological and local metric algorithm to SLAM [10, 75]. Extracted
features were divided into two groups for topological and metric environment
models, which were corners and openings for the former, and lines for the
latter. EKF was employed in the metric model. Such a hybrid strategy provides
benefits in computing efficiency since global topological representation demands
less computation. However, switching from topological to metric is brittle and needs
to be improved.

Se et al. proposed a vision-based SLAM algorithm by tracking the SIFT
visual landmarks in an indoor unmodified environment [13, 76, 77]. The authors
introduced a novel algorithm to select, match and track visual landmarks so that
features were invariant to image transform, e.g., translation, scaling and rotation,
and partially invariant to illumination, affine or 3-D projection. Processed features
with 3-D spatial information were stored in the SIFT database and concurrent pose
estimation was performed by ego-motion estimator. EKF was applied to reduce
uncertainties of the stored features when compared to current features in the case
of revisiting. Some practical issues in SLAM were also considered, e.g., feature
viewpoint and occlusion were determined by maintaining a view direction for each
landmark.

Kim et al. utilized a stereo camera and incorporated other sensors on a fixed wing
fight platform to explore unknown terrain environments [7, 78, 79]. These papers
addressed the first trials for the airborne SLAM problem using an actual flight
vehicle and real data. Such a dynamic airborne platform introduced more motion
and measurement formulating difficulties, e.g., fast flight speeds (40 m/s), 6 d.o.f.
in the 3-D environment and excessive vibration that affected inertial drift rate. The
algorithm formulated a dynamically nonlinear vehicle model by a strapdown inertial
navigation system (INS) that represented the position, velocity and altitude of the
platform [80, 81]. An inertial measurement unit (IMU) provided state prediction.
Meanwhile, the system was equipped with a vision sensor to determine actual range,
bearing and elevation to update parameters with the EKF framework. From 50
landmarks in the test-field, the vision sensor detected and registered 19 of those
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landmarks. All experimental results were verified by INS and GPS. An average
landmark accuracy of 7.6 m with 5 m initial uncertainty was reported in their
studies. Hygounenc et al. were also interested on airborne vehicle SLAM. They
built a wide base stereo vision bench on their airship so as to build an elevation
map [12]. Their algorithm was similar to that of Se et al. [13]. The stereo vision
computed 3-D Cartesian coordinates of the perceived pixels. Interest point selection
and matching method could identify visually ‘natural’ landmarks (e.g., a car) from
consecutive aerial images. The products of stereo vision and interest point matching
offered the estimation of six displacement parameters between the images. This
estimation could reject errors from matching, then compute an accurate estimate
of the motion between consecutive images. Motion estimation was then refined
by EKF. Experimental results showed that the translation errors were below 0.1 m
along a 60 m trajectory, while angular errors were below 0.5◦.

A number of researchers deal with the SLAM problem using teams of robots.
Cooperative behavior in SLAM is driven by the benefits from multiple robots.
For example, multiple robots can localize themselves more efficiently if they
exchange position information and sense each other. Additionally, a group of cheap
robots can acquire redundant information in the environment being explored, which
gives higher fault tolerance than one powerful and expensive robot. Madhavan et
al. addressed localization and terrain map-building algorithms for a distributed
cooperative outdoor multi-robot. These robots localized their poses within the EKF
framework, and combine the elevation gradient and vision-based range according
to those poses to acquire a local map. These multiple local maps were merged
during specific motion segments into a globally consistent metric map [11]. Other
notable contributions in the field of team robotic map-building are as follows: Sujan
et al. proposed schemes for robot teams so that the robots could efficiently map a
planetary environment, where sensor uncertainty and occlusions were significant
[15, 16]. Fierro et al. designed a framework and the software architecture for
the deployment of multi-robots in an unstructured and unknown environment [14].
Each of these robots had an omnidirectional camera as the sole sensor. Landmarks
and other robots could be identified by a YUV color space-based feature extractor,
which provided robustness to variation in illumination. An omnidirectional camera
produced a range map and range as well as bearing to the localizer. Robot poses
were determined within the EKF framework.

One of the recent advances in visual SLAM within the EKF framework is to
use monocular vision. This is due to the fact that at every snapshot moment,
stereo vision systems need to process two or more images, select features from
these images and match associated features from each other. In contrast, a single
camera only needs to process one image at every snapshot and match features every
two consecutive images, i.e., the single-camera system performs more efficiently.
For instance, Davison presented a single-camera algorithm for SLAM [30, 82].
However, his technique depended on some assumptions, which included a calibrated
camera, known starting point and smooth camera motion. This motion was
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constrained with constant velocity and constant angular velocity motion that could
be modeled by probability. Chen and Samarabandu proposed a scheme to visual
SLAM, which implemented MVG within the EKF framework [83]. The MVG
algorithm provided accurate structure and motion measurements from a monocular
camera, whereas traditional vision-based approaches require stereo vision. It
showed that the proposed algorithm could avoid the limitations of using MVG alone.
Thanks to MVG, the algorithm could be easily applied to single- or multiple-camera
sensing systems.

4.1.3. SEIF. Another key variant form of KF is IF, which is implemented by
propagating the inverse of the state error covariance matrix Σk. Such an inverse is
related to Fisher’s information matrix and is interpreted as a filter in information-
theoretical terms [40].

Two terms denote correspondence to their counterparts in KF: information matrix
Ω = Σ−1 and the information vector ξ = Σ−1µ. Thus, the IF algorithm can be
summarized as follows:

• Prediction:

Ωk|k−1 = (FkΩ
−1
k−1|k−1FT

k + Qk−1)
−1

ξ k|k−1 = Ωk|k−1(FkΩ
−1
k−1|k−1ξ k−1|k−1).

• Update:

ξ k|k = ξ k|k−1 + HT
k R−1

k zk

Ωk|k = Ωk|k−1 + HT
k R−1

k Hk.

Similar to the necessity of EKF, if using the same denotations in EKF, the EIF is
formulated as follows [84]:

• Prediction:

µk−1|k−1 = Ω−1
k−1|k−1ξ k−1|k−1 (16)

Ωk|k−1 = (F̂kΩ
−1
k−1|k−1F̂T

k + Qk−1)
−1 (17)

ξ k|k−1 = Ωk|k−1µk|k−1 = Ωk|k−1fk(µk−1|k−1).

• Update:

ξ k|k = ξ k|k−1 + ĤT
k R−1

k [zk − hk(µk|k−1) − Ĥkµk|k−1] (18)

Ωk|k = Ωk|k−1 + ĤT
k R−1

k Ĥk. (19)

There are two main advantages of the IF over the KF. First, if in the update stage,
there are N (N > 1) sensor data obtained at the k-th moment, and these data
can be filtered by simply summing the information matrix and vector. Thus, the
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(18) and (19) are modified as:

ξ k|k = ξ k|k−1 +
N∑
i

ĤT
k,iR

−1
k [zk,i − hk,i (µk|k−1) − Ĥk,iµk|k−1] (20)

Ωk|k = Ωk|k−1 +
N∑
i

ĤT
k,iR

−1
k Ĥk,i , (21)

where hk,i and Ĥk,i are the measurement function to the i-th feature and its Jacobian,
respectively. This advantage makes the EIF fit for the multi-robot problem: robots
provide decentral data so that the EIF can integrate them to calculate a more accurate
estimate [25]. Second, IF is naturally more stable than the KF [84].

However, the main problem hinders the applications of the EIF to SLAM is that
there are more matrix inversions in EIF ((16) and (17)) than in EKF. Thus, EIF
is generally believed to be computationally expensive. Thrun et al. proposed a
fully on-line SLAM algorithm by sparsifying the information matrix Ωk, i.e., SEIF
[25, 85]. The key principle making SEIF superior to conventional the EKF is the
constant time results existing in the SEIF:

• The measurements can be incorporated into SEIF in constant time. It is a natural
property of the EIF, which can be understood by the measurement update in (20)
and (21).

• If Ωk is sparse and the Jacobian of robot pose change F̂k in (15) is zero, the
constant time of motion update is guaranteed.

• If Ωk is sparse, but F̂k in equation (15) is nonzero, an optimization method is
applied to approximate matrix inversion so that the mean µk−1|k−1 is available,
which is named the amortized constant-time coordinate descent algorithm.

All these results in update of SEIF are constant time so that the processing time
of the SEIF algorithm is independent of the size of the map. It it important to note
that a prerequisite of SEIF is the sparseness of the information matrix Ωk. However,
Ωk is naturally not sparse. Thus, a sparsification technique is applied to remove the
link between a feature and the robot. Such a feature is deactivated, and the links
between ‘active’ features and the robot are updated to compensate for the removal.
The removal result depends on the magnitude of the link before removal. Thrun
et al. addressed a constant-time sparsification technique to solve the dependance.
The technique approximates the posterior p(xk, Y|zk), where Y is the set of all
features including three subsets, i.e., the set of all active features, features being
deactivated and deactivated features. Once the posterior is approximated correctly,
the information matrix Ωk is ensured to be sparse at all times.

Overall, there are four steps executed in sequence in the loop of the SEIF
SLAM algorithm: motion update, state estimate update, measurement update and
sparsification if motion or measurement update violating the sparseness constraint.
Details of the algorithm can be found in Ref. [84].
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Both real environment experiments and numerical simulation are performed in
Ref. [85]. In the real environment experiments, the vehicle transverses 3.5 km
and the average position error is smaller than 0.5 m. Compared to EKF, SEIF
is almost twice as fast and uses a quarter less memory than that of EKF. In the
simulation part of the experiments, three series of experiments are used to examine
data association, error comparisons between EKF and SEIF, and multi-robot SLAM.
All series of experiments result in satisfying values. The noteworthy point is that
SEIF generates bigger error than EKF, which offsets part of the advantages of speed
and computation. However, when the size of the map dimension increases largely,
the advantages are salient.

4.2. PF-based methods

PF, also called the sequential Monte-Carlo (SMC) method, is a recursive Bayesian
filter that is implemented in Monte Carlo simulations [86]. It executes SMC
estimation by a set of random point clusters (‘particles’) representing the Bayesian
posterior. In contrast to parametric filters (e.g., KF), PF represents the distribution
by a set of samples drawn from this distribution. There are two significant virtues
for PF compared to other Bayesian filters:

• Since this representation is approximate and nonparametric, the distributions it
can represent are not limited to Gaussian.

• This sampling-based representation can model nonlinear transformations very
well.

The second point is particularly useful when handling the use of highly nonlinear
sensor and robot motion models, whilst EKF is derived from the first-order Taylor
series expansions [71] and has difficulties in high linearity cases. However, like
a double-edge sword, this sampling-based approximation suffers from its growth
of computational complexity with the state dimension [86], whilst in SLAM, the
state is usually composed of both the robot pose and hundreds of features, which
makes it impossible to implement PF in practical real-time applications. Therefore,
in the state-of-the-art SLAM research, PF has only been successfully applied to
localization, but not to map-building [17, 31, 34, 87]. In this section, we would like
to review PF literature with only a brief introduction of the underlying mathematics.
Interested readers are referred to the book by Ristic et al. [86] for more details.

Denote a set of particles Xk = {x(1)
k , x(2)

k , . . . , x(N)
k }, where each particle x(i)

k

(1 � i � N ) is a hypothesis of the state xk at time k. N , usually a large number,
is the number of particles. Ideally, the hypothesis x(i)

k shall be proportional to the
Bayesian posterior:

x(i)
k ∼ p(xk|zk).

A basic PF algorithm can be summarized in Table 1. Here, the important weight
w

(i)
k arises by the principle of importance sampling [86], which can be interpreted

as follows. In order to compute a PDF f , but only given samples generated from a
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Table 1.
Basic PF algorithm

(1) Inputs: Xk−1 and zk

(2) Xk = ∅
(3) For i = 1 : N

• Sample (prediction) x(i)
k ∼ p(xk|x(i)

k−1)

• Important weight estimation: w
(i)
k = p(zk |x(i)

k )

• Update: Xk = Xk ∪ {x(i)
k , w(i)

k }

(4) End For

different PDF g, a weighting factor w is constructed that w(x) = f (x)/g(x), which
counts for the mismatch between f and g. f is termed the ‘target distribution’ and
g as the ‘proposal distribution’, such that

f = p(xk,(i)|zk)
Bayes
= ηp(zk|xk,(i), zk−1)p(xk,(i)|zk−1)

Markov= ηp(zk|x(i)
k )p(x(i)

k |x(i)
k−1)p(xk−1,(i)|zk−1) (22)

and:

g = p(x(i)
k |x(i)

k−1)p(xk−1,(i)|zk−1). (23)

So that:

w
(i)
k =

target distribution

proposal distribution
=

f

g

= ηp(zk|x(i)
k ), (24)

where the constant η has no impact in important sampling since the posterior of the
sampling particles is proportional to w

(i)
k . Now we can rewrite set Xk yielding

Xk = {x(i)
k , w(i)

k |i = 1, . . . , N}

= {x(1)
k , . . . , x(N)

k , w(1)
k , . . . , w(N)

k }. (25)

Similar to other Bayesian estimation methods, PF estimates up-to-current-step
posterior p(xk|zk) recursively from up-to-last-step posterior p(xk−1|zk−1). When
such posterior is represented by a set of particles, the PF constructs the particle
set Xk recursively from the last-step particle set Xk−1. In additional to the basic
algorithm depicted in Table 1, practical PF approaches have to solve degeneracy,
choice of importance density and resampling problems. A practical way to compute
the importance weight can be found in Ref. [31].

Figure 3 shows a general diagram for PF localization. As argued above, there is
not important paper using PF for both localization and map-building. For example,
Murphy used a Rao-Blackwellized PF to solve a simple form of the SLAM problem
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Figure 3. Flowchart of the PF localizer.

with a solution domain limited to a small 10 × 10 grid world [88]. However, Thrun
et al. proposed a PF–EKF-based algorithm for FastSLAM solution, where PF was
for robot pose and EKF estimated landmark locations based on the estimate poses
[31, 34]. They clearly showed that if there were totally K landmarks and M poses
(K � M and K up to 106), their FastSLAM algorithm could reduce running
time from O(K2) in EKF to O(MK) in PF–EKF. Their proposed tree-based data
structure could further reduce it to O(M log K). Additionally, this FastSLAM can
solve both online SLAM problems, i.e., determining the PDF p(xk|zk), and full
SLAM problems, i.e., determining the PDF p(xk|zk) via (22)–(24).

Porta et al. presented a vision-based localization approach within the PF
framework [17, 89]. In these papers, appearance-based feature representation was
introduced, which could simplify computation, and enhance resistance to noise,
occlusion and changes in illumination [90]. Such representation could avoid the
difficulties of geometric counterparts (e.g., polygonal obstacles with shape and
position information, landmarks), such as complexity and proneness to errors. In
contrast to other SLAM algorithms, the authors utilized onboard active stereo vision
to acquire the disparity map first. After map-building, they presented a novel
method to compress such a map to a reduced set of features. Principle component
analysis (PCA) was applied for compressing. Additionally, the EM algorithm
was used to deal with missing values. Processed results were the preliminarily
selected features in disparity map and intensity images. A sensor fusion mechanism
was designed for final feature selection. This fusion as well as localization was
performed by PF. Another interesting point proposed by this paper lies in an
entropy-based active vision strategy, which can solve the ‘next-best-view’ problem
in visual SLAM [91]. Results in real experiments on an actual vehicle were very
promising with localization errors in the range of ±25 cm and ±5◦.

4.3. EM-based algorithms

Like KF and PF, EM is a general-purpose algorithm for estimation which has
received the attention of the SLAM research community. In the light of maximum
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likelihood (ML) estimation, this technique exploits the incomplete-data problem
and offers an optimal solution, which makes it an ideal candidate for map-
building. However, this technique needs to process the same data repeatly to
obtain the most likely map. In other words, it does not perform efficiently and
incrementally. Consequently, it is not a real-time algorithm and is unsuitable
for online SLAM [28, 92]. Practical applications employed an incremental ML
approach, one part of EM, to construct the map when the robot’s path is given
by other techniques [93]. In this section, we will provide the basic mathematical
background for the EM algorithm in the context of robot navigation and highlight
the important contributions in this area.

Suppose the robot path xk = {x1, . . . , xk} and measurement data zk = {z1, . . . , zk}
are given, the objective is to evaluate the (i + 1)-th map m(i+1) yielding the EM al-
gorithm, such that

m(i+1) = arg max
m

Exk {log p(zk, xk|m)|m(i), zk}. (26)

Equation (26) can be interpreted as two iterations of the EM algorithm:

• Expectation step (E-step): Exk {log p(zk, xk|m)|m(i), zk}, where xk is the target in
this step, zk is a complete set and given, and map m is given and a complete set up
to the i-th component. log p(zk , xk|m) implies that the log-likelihood is formed
for xk if zk is fully observed and the i-th map m(i) is given. The purpose of the
expectation operation E{·} is to calculate the next moment map m(i+1) given by
the log-likelihood of the full path (pose) conditioned on the current moment map
m(i) and observation data zk.

• Maximization step (M-step): algorithm maximizes the most likely map given
pose expectation.

There are two points in the E-step that we need to clarify. First, xk (pose) is
unknown. Thus, (26) is re-written under the above mild assumptions [28], such that

m(i+1) = arg max
m

∑
t

∫
p(xt |m(i), zk) log p(zt |xt , m) dxt ,

where the term p(xt |m(i), zk) is the localization problem that we encountered before.
Solving this term becomes the second important point in the E-step. Suppose
t < k, we need to run Bayes rule twice to compute p(xt |m(i), zk): one is from
time 1 to t , p(xt |m(i), zt ); another is to find the remaining p(xt |m(i), zt+1, . . . , zk).
After multiplying two terms and normalizing, the desired posterior p(xt |m(i), zk) is
obtained. The E-step calculates expectations for different poses at all points in each
moment. This re-localization method makes EM non-incremental. Surprisingly,
such re-localization can tackle the correspondence problem (i.e., data association
problem), which arises when different features in the environment look alike [34].
This is a key advantage of EM over KF. More details will be given in Section 5.1.

Some recent SLAM algorithms only use the M-step of the EM approach,
commonly called incremental ML, to map the environments, while localization is
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realized by other probabilistic techniques. For instance, Thrun contributed a SLAM
algorithm for a team of robots which build a map online and accommodates large
odometry errors [93]. The PF-based localizer coped with odometer readings to
estimate the poses. Concurrently, the incremental ML utilized a laser rangefinder
and panoramic images to build the map. Extensions of map-building in this
approach included 3-D restructuring and texture mapping.

Another application of EM in robotic map-building was to describe environments
by basic geometric shapes or objects, such as lines, walls, etc. For example, Jogan
et al. proposed a vision-based robot localization framework in Refs [19, 94].
Two models called learning and localization models were implemented within this
framework. In the learning model (similar to map-building), the EM technique was
employed for simplifying the obtained panoramic images. Results were used by
the localizing mechanism to match stored landmarks and compute the robot poses.
Likewise, Thrun et al. developed a series of algorithms in this field [93, 95, 96].
However, those developments were beyond of scope of the visual SLAM. Interested
researchers are referred those articles for further details.

4.4. SM-based approaches

Apart from probabilistic frameworks that are used to formulate SLAM uncertainty,
SM estimation theory also tackles such uncertainty. In contrast to statistical
assumption on uncertainty, e.g., correlation modeling in KF, SM imposes an
assumption that uncertainty is bounded in norm by some quantity. Estimates of
robot and landmark positions are defined by those regions where the robot and
landmarks are guaranteed to lie, according to given information. These estimates of
regions are termed feasible uncertainty sets [97]. In this section, we briefly review
the basic formulation of SM-SLAM and discuss the computer vision usage in the
applications.

SM can be applied to either single-robot SLAM or the multi-robot case. Here, we
only present single-robot formulations and slight extensions to the multi-robot case.
In a 2-D environment, robot motion at the k-th moment is described by:

xk+1 = xk + uk + Gkwk,

where robot pose xk = [xkykθk]T is represented by x–y coordinates and one
orientation parameter, wk is the error affecting motion, uk is the input control vector
provided by external driving commands, and Gk is a matrix to shape this noise.
Noise applied to absolute orientation with respect to (w.r.t.) the world coordinate
system is scalar and formulated as follows

Θk = θk + vθ ,k,

where vθ ,k is the noise affecting the absolute orientation measurement. Now the
state vector Sk, including robot pose as well as n selected landmarks Li = [xLi

yLi
]T
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(i = 1, . . . , n), is formulated as follows:

Sk =
[
xT

k , LT
1 , . . . , LT

n

]T
.

Then, when the landmarks are static, the updated state yields:

Sk+1 = Sk + E3uk + E3Gkwk, (27)

where E3 = [I30]T ∈ R
3+2n and I3 is a 3 × 3 identity matrix. Two sets of

measurement equations take on the form:

�i,k = di(Sk) + vdi ,k
(28)

Ai,k = αi(Sk) + vαi ,k,

where �i,k and Ai,k are actual range and orientation readings provided by the
sensors, respectively; relevant range noise is vdi ,k, and orientation noise is vαi ,k.
More specifically, di(Sk) represents distance from the robot pose to the i-th
landmark w.r.t. world coordinate system and αi(Sk) is the orientation between
these two parties w.r.t. the world coordinate system. So far the equations are very
similar to the context of KF/EKF. However, in SM, the errors are not formulated by
statistics, e.g., a correlation matrix, but by assuming that such errors are unknown
but bounded (UBB) [97], such that

‖wk‖∞ � εw
k

|vθ ,k| � ε
vθ

k (29)|vdi ,k| � ε
vd

k

|vαi ,k| � ε
vα

k ,

where εw
k , εvθ

k , εvd

k and ε
vα

k are known positive scalars. ‖ · ‖∞ denotes the l∞ norm,
e.g., ‖v‖∞ = max vi is the maximal noise over all vi . Then, these terms can be
embedded into measurement sets Mk if the sensor readings �i,k and Ai,k are given,
such that:

Mk = Mo,k
⋂{

n⋂
i=1

Mi,k

}
, (30)

where at the k-th moment, orientation prediction set Mo,k includes all valid absolute
orientation measurements Θk whose errors are not greater than ε

vθ

k and yields

Mo,k = {S: |Θk − θ | � ε
vθ

k },

and at the k-th moment, actual range and orientation measurement sets w.r.t. the
i-th landmark include all valid measurements whose errors are not greater than ε

vd

k

and ε
vα

k , respectively, and yield

Mi,k =
{
S: |�i,k − di(S)| � ε

vd

k , |Ai,k − αi(S)| � ε
vα

k

}
.
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Let Ξk|k denote a feasible state set, which is the set of state vector Sk compatible
with robot dynamics given by the process model in (27), measurement equations
in (28). Then, we combine all terms and equations for the single-robot SM-SLAM
recursive solution, such that:

Ξ0|0 = Ξ0 (31)

Ξk|k−1 = Ξk−1|k−1 + E3uk−1 + E3Gk−1ε
w
k−1B∞ (32)

Ξk|k = Ξk|k−1
⋂

Mk, (33)

where B∞ is the unit ball in ‖wk‖∞. Equation (31) is the initial state of the
robot containing the initial pose and landmark position. Equation (32) acquires
information from an odometer or other inertial sensor describing robot motion.
Equation (33) combines all other valid measurements from the measurement sets
constrained by the conditions of UBB.

Figure 4 depicts the procedure of SM-SLAM. However, Mk in (30) cannot be
computed since Mo,k and {

⋂n
i=1 Mi,k} are not compatible: the former is ‘non-

convex’ and the latter is non-linear. In Refs [21, 22], Di Marco et al. proposed
a set of approximations to approach this problem. The basic idea is to choose
a class of simple approximation region R (e.g., box, ellipse, etc.) and select an
element Rk|k in the class at each moment k, where Ξk|k ∈ Rk|k. This selection must
meet some requirements so that the algorithm is efficient and suitable for real-time
implementation. For example, the size of region R must be minimized and the
computation complexity must be kept small.

SM-SLAM can be extended reasonably well to multi-robot systems. The exten-
sions are from more formulated measurement sets. These include measurements
of inter-robots, and measurements between the robot and the landmark; uncertainty
affecting the measurements between the robot and the landmark, and affecting the
measurements of inter-robots and similar measurement sets for orientation.

In the implementation of SM-SLAM reported by Di Marco et al. [21, 22],
an omnidirectional stereo system was equipped on the multi-robots. Range data

Figure 4. Flowchart of the SM-SLAM framework.
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were acquired by vision geometry calculation. Additionally, the authors quantized
errors in (29) with empirical constants. For example, they assigned ε

vα

k = 3◦,
ε

vd

k = κdd
2
i (Sk) and ε

vθ

k ≈ 0, where κd = 0.002, while landmarks are within 50 m.
For each robot, motion model error wk was generated as independent uniformly
distributed signals, with a mean value proportional to the distance transversed
during the last-step move. From such error upper-bounds, one can see the accuracies
of this technique. Another point summarized from experimental results is that
multi-robot SLAM outputs are superior to single ones. The superiorities include
consuming time, average landmark uncertainty and average pose uncertainty. So
far, only simple 2-D landmarks have been detected by this SM-SLAM approach.
Augmenting ‘natural’ feature analysis would make it more practical and robust.

5. OTHER ISSUES IN SLAM

The main frameworks (KF, PF, EM and SM) deal with noise in the robot’s
perception and actuation, which is the biggest challenge in the map-building
problem [28]. Additionally, other challenges such as perceptual ambiguity (data
association problem), loop-closing problem, bearing-only SLAM problem and
kidnapped robot problem are also important topics that are worth considering.

5.1. Data association

Data association in SLAM can be simply presented as a feature correspondence
problem, which relates two features observed in different positions. Two common
applications of such relating (or association) are to match two successive scenes and
to close a loop of a long trajectory when a robot comes to the starting point of the
trajectory again. Specifically, if an integer nt is to label the i-th acquired feature f i

t

at time t and if nt = j � N where N is the total number of features in the built
map, then the i-th feature corresponds to the j -th feature that was observed before.
Otherwise, if nt > N , f i

t is a previously unseen feature.
To determine the value of nt , a conventional technique is to apply ML. For

example, the probability of a data association value nt can be evaluated through
the derivation of Chapman–Kolmogorov, PF and Bayes approaches [34]. By trying
all possible observed features, the maximum of the probability result w.r.t. nt is
compared to an empirical threshold and determine whether f i

t corresponds to
an existing j -th feature or it is a previously unseen feature. There are other
techniques to deal with the data association problem in SLAM which can be found
in Refs [98, 99].

5.2. Loop-closing

The purpose of studying loop-closing is to build a consistent map in large-scale
environments. Usually, problems happen when a robot turns back to the starting



www.manaraa.com

Advances in SLAM using computer vision 257

point of its trajectory (a trajectory loop is closed). Due to accumulated errors along
the trajectory, the reconstructed map is not consistent, i.e., the loop of the trajectory
is not closed properly (see figs 2 and 4 in Ref. [35]). Correct data association is
required to uniquely identify the landmarks corresponding to previously seen ones,
from which loop-closing can be detected. Then, different techniques are applied to
correct the map, for example, Kalman smoother-based and EM-based techniques.

A recent review of the approaches to the loop-closing problem can be found in
Ref. [35]. From it, another advantage of EM and PF over KF can be noticed in
that both EM and PF can deal with the loop-closing problem, but KF cannot. Here,
we summarize two additional algorithms that are not covered. Kaess and Dellaert
applied the EM approach that is employed in structure from motion. They addressed
a solution by partitioning an observed point track, where a partition assigns each
track to a specific structure point. If the partition is known, the motion and structure
are established a posteriori by optimizing the likelihood over estimate of structure
and motion. However, in most circumstances, partition is unknown. To solve
the posterior over structure and motion given feature tracks, a Monte-Carlo EM
algorithm is implemented iteratively. In the E-step, virtual structure is estimated
by sampling and the virtual structure is interpreted as correct sampling divided by
the total number of sampling. In the M-step, the virtual structure is employed to
obtain a better motion estimate by maximizing the expected log-posterior and prior
of motion.

Another important approach to vision-based loop-closing is reported by Se et al.
[77]. Similar to the methods that globally correlate new measurements with an
existing map (local registration and global correlation), the approach is to build
multiple 3-D submaps which are merged together subsequently. On the basis of the
distinctive features tracked by SIFT, Hough transform and RANSAC are applied for
submap alignment to achieve global localization, where some overlap exists in two
successive submaps. When detecting a significant overlap of landmarks between
the current submap and the previously built submap, a global minimization strategy
is addressed to do backward correction to all the submap alignments. By using
this loop-closing constraint, the effects of accumulated error can be avoided and
then a better global 3-D map is built. In the context of data association and loop-
closing problems, the proposed method of combining SIFT and RANSAC provides
distinctive features, which are very reliable and considered as a type of ‘fingerprint’
[77], not like other methods that commonly used only corners or lines for mapping.

5.3. Bearing only SLAM

The bearing-only SLAM problem exits in the landmark initialization of all visual
SLAM solutions due to a limitation of computer vision where a meaningful range
cannot be calculated from a single measurement and only the angle to landmark
sightings is available. Thus, an estimate of the landmark position will not be
possible until successive measurements from different points of view are made.
More technically, it is not available until baseline requirements of different images
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have been satisfied [37]. Basically, bearing-only SLAM can be divided into two
categories, i.e., delayed and undelayed initialization.

5.3.1. Delayed initialization. Due to the fact that computer vision loses one
dimension of the world, ‘enough baseline’ requirements must be met so that past
poses of the robot have to be stored, together with associated measurements.
Landmark initialization is delayed until the baseline is sufficient to establish a
Gaussian estimate. Two mature approaches are as follows:

• PF for detecting range proposed by Ref. [30]. The initialization is deferred until
range variance is smaller than an EKF Gaussian acceptable estimate.

• Memorizing past poses with associated measurements until the requirement of
the baseline is met, then calculating all delayed ranges.

5.3.2. Undelayed initialization. There are two undelayed methods reported in
recent conference proceedings [36, 37]. The earlier one by Kwok and Dissanayake
[36] presented a set of hypotheses for the position of the landmark and all of
the hypotheses are included inside the initial map. On successive observations,
the sequential ratio test (SRT) based on likelihood is used to eliminate any bad
hypothesis and the one with the ML is used to correct the map.

A Federated Information Sharing-based SLAM was introduced by Solà et al. [37].
This technique can release the computation from Gaussian Sum Filter (GSF)-based
initialization, which follows a set of weighted maps, one for each hypothesis making
computational cost grow multiplicatively. GSF-SLAM proposed an additive growth
of computation. The depiction can be understood in fig. 3 of Ref. [37].

Apparently, undelayed methods in bearing-only SLAM are superior to the delayed
ones in at least two aspects. First, undelayed methods can avoid unnecessary storage
of past poses and measurements. Second, ‘enough baseline’ may be difficult for
some outdoor navigations when the robot travels on a straight trajectory and cameras
look forward.

5.4. Kidnapped robot problem

The kidnapped robot problem describes how to recover when the robot is moved to
an unknown location. Practically, there is no localization algorithm that guarantees
never to fail. Therefore, it is essential for mobile robots in localization, particularly
in global localization. Global landmarks and sensors, e.g., a GPS, can recover the
robot from kidnapped status.

Interestingly, the solutions for the kidnapped robot can help improve SLAM
algorithms. In Ref. [38], Wang et al. addressed a decoupled SLAM (D-SLAM)
approach: a low-dimensional (robot) localization problem and static landmark
mapping problem. Two methods are combined to use concurrently. One is normal
SLAM and the other is the kidnapped robot solution that is given by current
observation and the previously generated map. The normal SLAM solution is used
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unless loop-closing is present, where the kidnapped robot solution given by global
localization is superior to normal SLAM under loop-closing circumstances. Such a
combination offers better localization estimates than using only either one.

6. SUMMARY AND COMPARISONS

In this survey, we have reviewed the SLAM frameworks and related advances of
computer vision. In this section, we will compare and summarize some important
properties of these frameworks.

KF, PF and EM are probability-based techniques. They are the mathematical
derivations of the recursive Bayes rule (5). The first framework we discussed
is KF, which is employed by most of the visual SLAM algorithms to handle
the localization and map-building uncertainties. As an advantage, KF and its
extensions provide optimal MMSE estimates of the state (robot pose and landmark
position). Furthermore, the covariance matrix in the KF framework is proved to
converge strongly [6]. Such variance matrices (in (10) and (12)) represent the cross-
correlation between landmark and robot position estimate errors, and between that
of the landmarks themselves. However, the limitations of KF are also notable. For
instance, its Gaussian noise assumption restricts its adaptability for data association
and number of landmarks, i.e., it is only suitable for environments with a sparse set
of features.

PF has some advantages over KF, such as the abilities to deal with highly nonlinear
sensor and robot motion as well as non-Gaussian noise. PF is derived from SMC
and Bayes rule. It implements likelihood distribution and uses particles instead
of a determined point for state estimation. Due to this ‘one-to-many’ nature of
estimation, PF has only been used for localization. Applications to PF must
integrate with other techniques, e.g., EKF, to achieve the goal of SLAM.

Considering the robot performs SLAM with incomplete previous pose informa-
tion, EM is a good solution. The mathematical background of EM is from ML
estimation and Bayes rule. Generally, due to its characteristic of repeated data
processing, EM is not suitable for incremental implementation. However, this char-
acteristic enables the feature correspondence function for SLAM. Practical SLAM
algorithms only use the M-step of the EM approach, i.e., incremental ML to map
the environments, whereas localization is accomplished by other techniques.

SM-based techniques formulate the uncertainty for SLAM with the assumption
of UBB instead of statistical. It models robot motion and absolute orientation
noises, as well as range and bearing noises in sensor observation. All these noises,
not necessary Gaussian, are bounded by some scalars so as to be embedded into
measurement sets. Measurement sets integrate with the feasible set, which is the
set of robot dynamics, to produce outputs for SLAM. Comparisons of these four
frameworks are tabulated in Table 2. From it, the inherent properties and natural
advantages or disadvantages can be understood.
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Table 2.
Comparisons of the main SLAM frameworks

KF PF EM/Incremental ML SM

Probabilistic yes yes yes no
Math background Bayesian,

MMSE
SMC,
Bayesian

Bayesian, ML Set membership set

Successful
application

SLAM localization map building, vision-based
landmark representation

SLAM

Sensor noise Gaussian any any any
Incremental yes yes no yes
Uncertainty
modeling

statistical statistical statistical UBB assumption

Data association no no yes no

Important topics such as data association, loop-closing, bearing-only SLAM
and kidnapped robot problems are either requisites of SLAM or so-called post-
processing of SLAM. Increasing research interests are being drawn in these sub-
disciplines of SLAM.

Current advances in camera and computer hardware give impetus for computer
vision making adequate progresses in the fields of 3-D reconstruction, feature
tracking and recognition, and object identification in the environment. Within
the above frameworks, newly developed vision-based algorithms supply complex
and nature landmark information to estimate optimal robot poses, and reconstruct
accurate and high-level object maps. It can be concluded that with the development
of computer vision techniques, SLAM algorithms are becoming more efficient,
robust and close to a human’s perception of the environment so as to facilitate the
interaction between people and robots.
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